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Amyloid pathology in the brain after ischemia
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A b s t r a c t

As the population is aging all over the world, the economic burden of ischemic brain injuries is constantly increasing. 
Human brain ischemia is one of the leading causes of premature death, significant morbidity and physical and mental 
disabilities, resulting in a lower quality of life and unusually high costs of health and social care. One of the most diffi-
cult problems associated with the pathology of the brain after ischemia is progressive dementia observed in people who 
survived the stroke. More recently, brain ischemia has been shown to elicit Alzheimer’s disease neuropathologic change, 
possibly facilitating the development of dementia due to the amyloidogenic processing of Alzheimer’s disease-related 
amyloid protein precursor into amyloid. The main purpose of this review is to present the development of Alzheimer’s 
disease neuropathologic change in the brain after human and experimental ischemia, with a particular emphasis on 
proteins and genes involved in the amyloidogenic processing of the amyloid protein precursor to amyloid.
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Introduction

Brain ischemia is more and more common in 
aging societies in both developing and developed 
countries. Ischemic stroke is the second cause of 
death and the third cause of disability and may 
soon become the leading cause of death in the 
world [6,10,39] and the development of the Alz-
heimer’s disease [9,20,28,38,73]. Epidemiological 
research indicates that approximately 17 million 
patients are diagnosed with an ischemic stroke 
each year [6,9]. About 6 million stroke patients die 
every year around the world [6]. Currently, the num-
ber of patients who survived ischemic stroke has 
reached 33 million [6,9]. According to epidemiologi-

cal forecasts, this number will increase to 77 million 
in 2030 [6]. Physical damage after the stroke usu-
ally improves to a greater or lesser extent, but for 
unknown reasons, the decline in cognitive activity is 
slowly progressing. Recent reports on the burden of 
ischemic stroke in relation to incidence, prevalence, 
disability-adjusted life-years loss, loss of work effi-
ciency, dependence in daily life activities and mor-
tality have shown a growing economic burden with 
regard to the high costs of health and social care 
and clinical practice of people who suffered a stroke 
[16-18]. Information on the increased incidence of 
ischemic stroke in 18-50-year-old patients which 
has been recently released indicates that the inci-
dence of stroke in adults is more than 2 million 
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cases per year [5]. Therefore, it should not come as 
a surprise that cognitive impairment due to injury 
after the stroke, which eventually turns into demen-
tia, accounts for a significant part of the costs relat-
ed to health care, clinical practice and social ser-
vices. The total annual cost of an ischemic stroke 
in Europe was around 64 billion euros in 2010 [42]. 
The occurrence of dementia after the first stroke is 
estimated at 10% of survivors and after recurrent 
stroke at 33-41% [44]. In a long-term study on the 
incidence of stroke-related dementia, cumulative 
incidence over 25 years was estimated at 48% [32]. 
Other authors argue that if the trend of problems 
with ischemic stroke continues, by 2030 about  
12 million people will die, 70 million people will be 
after a  stroke and more than 200 million disabili-
ty-adjusted life-years loss will be noted annually 
worldwide [18]. It has been shown that focal cere-
bral ischemia in humans, caused by unilateral carot-
id stenosis, causes an increased accumulation of 
amyloid in the brain confirmed by positron emission 
tomography, which suggests a relationship between 
ischemic stroke and Alzheimer’s disease-related 
amyloid [23]. Data from experimental studies have 
shown that the presence of a high level of amyloid 
in the brain after ischemia increases the neuroin-
flammatory response and the size of the infarct 
[77,83,87]. The aim of this review is to present the 
generation of amyloid in the brain after human and 
experimental ischemia, with a particular emphasis 
on proteins and genes involved in amyloidogen-
ic processing of the amyloid protein precursor to  
amyloid.

Amyloid in brain and blood after brain 
ischemia

In humans

In the human brain after ischemia, amyloid 
accumulation in various brain structures has been 
demonstrated [26,27,37,88]. Observations have 
shown both diffuse and senile amyloid plaques in 
areas of the brain prone to ischemia, in the cerebral 
cortex and in arterial border zones after brain injury 
due to ischemia and reperfusion [26,27,37,88]. The 
amount of amyloid plaques in various areas of the 
brain correlated well with the age of the patient 
who had an ischemic event [26,27]. In addition, in 
the white and grey matter, immunological staining 
of amyloid in the perivascular space that surround-

ed the vessels was found [88]. The accumulation of 
amyloid in the perivascular space looked like cuffs. 
Amyloid deposits in the perivascular space of the 
blood-brain barrier microvessels suggest that amy-
loid originated from serum [48,52,53,56]. Evidence 
confirming this idea comes from a  clinical study 
in which plasma amyloid is found to be elevated 
(approximately a 70-fold increase) in patients after 
a  brain ischemia-reperfusion episode [33,91]. Neu-
rons from the hippocampus and cortex were very 
strongly stained on amyloid. Epithelial and ependy-
mal cells also stained on the amyloid. In the cells of 
the choroid plexus, epithelium and the lining cells 
bordering the cerebral ventricles, the receptor for 
advanced glycation end-products was found [37]. 
The data showed that the choroid plexus epitheli-
um and the lining cells, equipped with a  receptor 
for advanced glycation end products, play not only 
a significant role in the accumulation of amyloid in 
brain tissue, but also are a place where amyloid can 
be removed [52,53]. According to another research 
article, the immunoreactivity of amyloid 1-40 and 
1-42 in the human hippocampus after ischemia was 
observed in the intra- and extracellular space [74].

In animals 

Various parts of the amyloid protein precursor 
have been reported in the intra- and extracellu-
lar space of the hippocampus, white matter, cortex 
and around the lateral ventricles, after an episode 
of ischemia of the brain with reperfusion in animals 
[19,21,24,25,35,36,46,49-51,57,60,61,80,84,90]. 
Numerous extracellular depositions of various frag-
ments of the amyloid protein precursor were noted 
around the microvessels of the blood-brain barrier. 
Perivascular deposits of all parts of the amyloid pro-
tein precursor formed well-marked, irregular, diffuse 
plaques that regularly surround the vessels and resem-
ble a perivascular hallo or cuff [46]. Accumulation of 
all fragments of the amyloid protein precursor, such as  
N- and C-terminal and β-amyloid peptide, in neuronal, 
glial, pericyte, endothelial and ependymal cells was 
also observed [2-4,41,43,46,50,54,55]. Deposition of 
amyloid as diffuse plaques in response to experimen-
tal ischemia-reperfusion injury of the brain does not 
appear to be a temporary phenomenon because dif-
fuse amyloid deposits have been shown to convert to 
the senile plaque at approximately 9 months after 
ischemic damage [85].
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mRNA of the amyloid protein precursor  
in the brain after experimental ischemia

After experimental brain injury due to ischemia 
and reperfusion, the mRNA of the amyloid protein 
precursor was induced in penumbra and in the core, 
up to 200% and 150%, respectively [78,79]. After 
focal ischemic brain injury with recirculation, the 
amyloid 751 and 770 protein precursor mRNA also 
increased within one week [31].

mRNA of enzymes processing the amyloid 
protein precursor in the brain after 
experimental ischemia 

α-secretase mRNA, which metabolizes the amy-
loid protein precursor by non-amyloidogenic pro-
cessing [14], decreased after experimental brain 
damage due to ischemia-reperfusion [40]. In amyloi-
dogenic processing, the amyloid protein precursor is 
metabolized by β- and γ-secretase [14], whose mRNA 
and activity are stimulated by the ischemic episode 
in the cerebral cortex and the hippocampus to pro-
duce the β-amyloid peptide [8,11,12,62,86,87]. In 
other studies, the maximum increase in presenilin 1 
mRNA was recorded in the hippocampus, cortex and 
striatum after ischemic brain injury with recircula-
tion [45,82].

Genes involved in the production  
of amyloid in the brain after experimental 
ischemia

CA1 region of the hippocampus

Expression of the amyloid protein precursor gene 
dropped below the control values in the CA1 hippo-
campal region 2 days after brain ischemia with recir-
culation [30]. But at that time, the expression of the 
β-secretase and presenilin 1 and 2 genes was maxi-
mal [30]. Expression of the amyloid protein precursor, 
β-secretase and presenilin 1 and 2 genes increased 
above the control value 7 days after ischemic brain 
injury [30]. Expression of the amyloid protein precur-
sor gene increased above the control value, while the 
β-secretase and presenilin 1 and 2 genes decreased 
below control values 30 days after ischemic cere-
bral episode [30]. Modifications of the mean lev-
el of expression of the amyloid protein precursor, 
β-secretase and presenilin 2 genes were statistically 
significant between 2 and 7, between 2 and 30 and 
between 7 and 30 days after brain injury as a result 

of ischemia-reperfusion [30]. Changes in the mean 
level of expression of the presenilin 1 gene were sta-
tistically significant between 2 and 30 and between  
7 and 30 days after the ischemic episode [30]. 

Medial temporal cortex 

Expression of the amyloid protein precursor 
gene in the medial temporal cortex decreased below 
control values 2 days after cerebral ischemia with 
recirculation [63]. But at that time, the expression 
of the β-secretase gene increased maximally [63]. 
Seven and thirty days after ischemic brain injury, the 
expression of the amyloid protein precursor gene 
has risen above the control value, and the expression 
of the β-secretase gene has been reduced below the 
control values [63]. Expression of the presenilin 1 
gene was within the control limits on days 2, 7 and 
30 after brain injury by ischemia-reperfusion [64]. 
On the second day after ischemia, the expression 
of the presenilin 2 gene was maximal, but on days  
7 and 30 of the recirculation the expression was 
within the control limits [64]. Changes in the mean 
level of gene expression of the amyloid protein pre-
cursor, β-secretase and presenilin 2 were statistical-
ly significant between 2 and 7 and between 2 and  
30 days after brain injury due to ischemia-reperfu-
sion [63,64]. Changes in the mean level of expres-
sion of the presenilin 1 gene were not statistically 
significant at all the time after ischemia [64].

Discussion

The presented data support the thesis that isch-
emia-reperfusion injury of the brain plays a key role 
in the amyloidogenic processing of the amyloid pro-
tein precursor to amyloid in the ischemic brain and 
blood [30,33,46,57,62,65,70,76,91]. The amyloid pro-
tein precursor is metabolized by β-secretase, whose 
gene expression [30,65,66], mRNA and protein level 
[12,86,89] increases in the brain after ischemia-reper-
fusion injury. Expression of presenilin genes and 
their levels of mRNA and proteins that are increased 
following ischemic brain injury [30,40,64,82] are 
involved in the production of the β-amyloid peptide 
by the γ-secretase complex [62,65]. After brain injury 
due to ischemia and reperfusion, the amyloid level 
rises as a consequence of neuronal death after isch-
emia [24] and it is highly likely that neurotoxic amy-
loid activity additionally exacerbates ischemic neu-
ronal damage. The above data help to understand 
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acute and chronic neuronal loss and brain atrophy 
after the ischemia-reperfusion episode in the brain 
[7,20,22,54,57-59] and slow, progressive accumula-
tion of amyloid plaques in the brain tissue after the 
ischemia episode [26,27,46,57,85,88]. After ischemic 
brain injury, an increase in blood amyloid levels was 
observed in humans [33,91]. The level of serum amy-
loid growth correlated negatively with the clinical 
improvement after ischemia-reperfusion brain inju-
ry, which in turn reflected the severity of ischemic 
injury [91] and/or the development of recurrent isch-
emic stroke [47]. We can conclude that the proteom-
ic and genomic changes associated with Alzheimer’s 
disease contribute to brain ischemia-reperfusion 
neurodegeneration [72] with the development of the 
dementia [7,9,13,15,28,29,34,75,81].

Brain injury after ischemia seems to favour the 
development of ischemic neurodegeneration of the 
Alzheimer’s disease neuropathologic change [1] by 
neuronal damage and death [54], neuroinflamma-
tion [77], accumulation of all parts of the amyloid 
protein precursor, especially amyloid [46,58], tau 
protein dysfunction [67,68] and dysregulation of 
proteins associated with Alzheimer’s disease and 
their genes [30,63,64], changes in the white matter 
and general brain atrophy with final development of 
dementia [66,71,75]. Therefore, it is now required 
to know the mechanisms underlying the progres-
sive development of irreversible effects in the brain 
after ischemia. Here we present new pathways in 
ischemia-reperfusion neurodegeneration with the 
phenotype and genotype of Alzheimer’s disease, 
focusing on the expression of genes involved in the 
metabolism of the amyloid protein precursor to amy-
loid. Increased expression of the amyloid protein 
precursor and its amyloidogenic processing genes 
and proteins after ischemic brain damage sheds 
new light on a  better understanding of the role of 
amyloid as an additional factor in neuropathology 
after ischemia. In addition, dysregulation of genes 
involved in amyloid production, such as the amyloid 
protein precursor, β-secretase and presenilin 1 and 2 
in the hippocampus and medial temporal cortex 
after brain ischemia, has been documented, and 
these genes and proteins are important in the devel-
opment of sporadic Alzheimer’s disease. It has also 
been shown that ischemic-reperfusion injury of the 
brain induces neuronal damage in the hippocampus 
and temporal cortex in an amyloid-dependent man-
ner [30,63,64], thus determining a new and import-

ant way to regulate the survival or death of neurons. 
Although important advances have recently been 
made in research on neuropathogenicity of amyloid 
after cerebral ischemia, the basic pathways/mech-
anisms induced by amyloid after ischemia with the 
reperfusion of irreversible neurodegeneration are still 
unclear. The high prevalence of dementia in survivors 
of ischemic stroke remains a challenge for both the 
scientific and the clinical community [69]. It seems 
clear that future research should focus on preventing 
the development of Alzheimer’s disease neuropatho-
logic change [1] in the brain after ischemia associ-
ated with proteins characteristic for Alzheimer’s 
disease and their genes, which may result in better 
neurological outcomes after the ischemic episode.
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